67 research outputs found

    Heat Transfer and Thermal Energy Storage Enhancement by Foams and Nanoparticles

    Get PDF
    The use of innovative methods for the design of heating, cooling, and heat storage devices has been mainly oriented in the last decade toward the use of nanofluids, metal foams coupled with working fluids, or phase change materials (PCMs). A network of nine Italian universities achieved significant results and innovative ideas on these topics by developing a collaborative project in the last four years, where different approaches and investigation techniques were synergically employed. They evaluated the quantitative extent of the enhancement in the heat transfer and thermal performance of a heat exchanger or thermal energy storage system with the combined use of nanofluids, metal foams, and PCMs. The different facets of this broad research program are surveyed in this article. Special focus is given to the comparison between the mesoscopic to macroscopic modeling of heat transfer in metal foams and nanofluids, as well as to the experimental data collected and processed in the development of the research

    Seropositivity and Risk Factors Associated with Toxoplasma gondii Infection in Wild Birds from Spain

    Get PDF
    Toxoplasma gondii is a zoonotic intracellular protozoan parasite of worldwide distribution that infects many species of warm-blooded animals, including birds. To date, there is scant information about the seropositivity of T. gondii and the risk factors associated with T. gondii infection in wild bird populations. In the present study, T. gondii infection was evaluated on sera obtained from 1079 wild birds belonging to 56 species (including Falconiformes (n = 610), Strigiformes (n = 260), Ciconiiformes (n = 156), Gruiformes (n = 21), and other orders (n = 32), from different areas of Spain. Antibodies to T. gondii (modified agglutination test, MAT titer ≥1∶25) were found in 282 (26.1%, IC95%:23.5–28.7) of the 1079 birds. This study constitute the first extensive survey in wild birds species in Spain and reports for the first time T. gondii antibodies in the griffon vulture (Gyps fulvus), short-toed snake-eagle (Circaetus gallicus), Bonelli's eagle (Aquila fasciata), golden eagle (Aquila chrysaetos), bearded vulture (Gypaetus barbatus), osprey (Pandion haliaetus), Montagu's harrier (Circus pygargus), Western marsh-harrier (Circus aeruginosus), peregrine falcon (Falco peregrinus), long-eared owl (Asio otus), common scops owl (Otus scops), Eurasian spoonbill (Platalea leucorodia), white stork (Ciconia ciconia), grey heron (Ardea cinerea), common moorhen (Gallinula chloropus); in the International Union for Conservation of Nature (IUCN) “vulnerable” Spanish imperial eagle (Aquila adalberti), lesser kestrel (Falco naumanni) and great bustard (Otis tarda); and in the IUCN “near threatened” red kite (Milvus milvus). The highest seropositivity by species was observed in the Eurasian eagle owl (Bubo bubo) (68.1%, 98 of 144). The main risk factors associated with T. gondii seropositivity in wild birds were age and diet, with the highest exposure in older animals and in carnivorous wild birds. The results showed that T. gondii infection is widespread and can be at a high level in many wild birds in Spain, most likely related to their feeding behaviour

    Perception of Loudness Is Influenced by Emotion

    Get PDF
    Loudness perception is thought to be a modular system that is unaffected by other brain systems. We tested the hypothesis that loudness perception can be influenced by negative affect using a conditioning paradigm, where some auditory stimuli were paired with aversive experiences while others were not. We found that the same auditory stimulus was reported as being louder, more negative and fear-inducing when it was conditioned with an aversive experience, compared to when it was used as a control stimulus. This result provides support for an important role of emotion in auditory perception

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Protection of Spanish Ibex (Capra pyrenaica) against Bluetongue Virus Serotypes 1 and 8 in a Subclinical Experimental Infection

    Get PDF
    Many wild ruminants such as Spanish ibex (Capra pyrenaica) are susceptible to Bluetongue virus (BTV) infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1) and 8 (BTV-8) are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls) were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi). The vaccinated ibexes showed significant (P<0.05) neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi) and in target tissue samples obtained at necropsy (8 and 28 dpi). BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication

    Multiple-look effects on temporal discrimination within sound sequences

    Get PDF
    The multiple-look notion holds that the difference limen (DL) decreases with multiple observations. We investigated this notion for temporal discrimination in isochronous sound sequences. In Experiment 1, we established a multiple-look effect when sequences comprised nine standard time intervals (S) followed by an increasing number of comparison time intervals (C), but no multiple-look effect when one trailing C interval was preceded by an increasing number of S intervals. In Experiment 2, we extended the design. There were four sequential conditions: (a) 9 leading S intervals followed by 1, 2, …, or 9 C-intervals; (b) 9 leading C intervals followed by 1, 2, …, or 9 S intervals; (c) 9 trailing C-intervals preceded by 1, 2, …, or 9 S-intervals; and (d) 9 trailing S-intervals preceded by 1, 2, …, or 9 C-intervals. Both the interval accretions before and after the tempo change caused multiple-look effects, irrespective of the time order of S and C. Complete deconfounding of the number of intervals before and after the tempo change was accomplished in Experiment 3. The multiple-look effect of interval accretion before the tempo change was twice as big as that after the tempo change. The diminishing returns relation between the DL and interval accretion could be described well by a reciprocal function

    Novelty Enhances Visual Perception

    Get PDF
    The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception

    Effectiveness of habitat management in the recovery of low-density populations of wild rabbit.

    Get PDF
    Understanding the relationship between spatial patterns of landscape attributes and population presence and abundance is essential for understanding population processes as well as supporting management and conservation strategies. This study evaluates the influence of three factors: environment, habitat management, and season on the presence and abundance of the wild rabbit (Oryctolagus cuniculus), an important prey species for Mediterranean endangered predator species. To address this issue, we estimated wild rabbit presence and abundance by latrine counting in transects located in 45 plots within a 250×250 m grid from June 2007 until June 2009 in a 1,200 ha hunting area in southern Portugal.We then analyzed how wild rabbit presence and abundance correlatewith the aforementioned factors. Our results showed that the main variable influencing wild rabbit presence and abundance was the distance to the artificial warrens. North and northeast slope directions were negatively related to wild rabbit presence. Conversely, rabbit presence was positively correlated with short distances to ecotone, artificial warrens, and spring. Regarding rabbit abundance, in addition to artificial warrens, soft soils, bushes, and season also had a positive effect. We found that environmental variables, management practices, and season each affect wild rabbit presence and abundance differently at a home range scale in low-density population. Thus, our major recommendations are reducing the distance to artificial warrens and ecotone, ideally to less than 100 m, and promoting habitat quality improvement on slopes with plenty of sun exposure
    corecore